Nearly zero-energy buildings: Legislation alternatives for residential wood combustion and the impact on population exposure to fine particles

Mikko Savolähti
Finnish Environment Institute

35th International Technical Meeting on Air Pollution Modelling and its Application
6.10.2016
Energy performance of buildings directive

- All new buildings need to be nearly zero-energy (nZEB) by the end of 2020
- \(nZEB = \) “very high energy performance, and the low amount of energy they require comes mostly from renewable sources”
- Member states can determine their own national legislation to achieve this goal in a cost-efficient way
Energy performance of houses measured by energy efficiency rate (E-value)

E-value = \(\frac{kW_{\text{purchased energy}}}{m^2} \times \text{energy coefficient} \)

Arbitrary coefficients, not comparable between countries

<table>
<thead>
<tr>
<th>Heating method</th>
<th>Energy coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil fuel boiler</td>
<td>1</td>
</tr>
<tr>
<td>Biofuel boiler or stove</td>
<td>0.5</td>
</tr>
<tr>
<td>Electric heating</td>
<td>1.7</td>
</tr>
<tr>
<td>District heating</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Proposed new value for detached houses up to 25% more stringent than the current one, depending on the size of the house
Finnish masonry heater

- Used mostly for supplementary heating
- ~90% of new detached houses include one
- Efficient combustion
The assignment

- Current Finnish legislation has a 2000 kWh/a maximum allowance of net heating energy from masonry heaters.
- If this is increased to 3000 or 4000 kWh/a in
 - All houses
 - Houses with electric heating

What is the impact on the population exposure to fine particles in Finland in 2050?

- Justification: wood is being viewed as carbon neutral
 => Increasing the use of wood could substitute for smaller savings in energy efficiency.
We assumed that people use their masonry heater according to the maximum limit in the E-value.

The construction of new detached houses:
- 11,500 houses built annually.
- Spatial allocation based on the locations of new detached houses from the last 10 years.
- Primary heating methods from the latest registered year.
Methods and assumptions

- Net heating energy converted to wood consumption using a coefficient of $1/0.6$
- $\text{PM}_{2.5}$ emission factor for masonry heaters 48 mg/MJ
- Three scenarios:
 - a) 2000 kWh/a in all houses (Baseline)
 - b) additional 2000 kWh/a in houses with electric heating
 - c) 4000 kWh/a in all houses.
• The dispersion of emissions modelled using source-receptor matrices
• Resulting annual average concentrations in a 1km x 1km grid
• Compared to population in each grid cell
Results: modelled PM$_{2.5}$ concentrations

- Concentrations mostly < 0.5 μg/m3 in case a) and <1.3 μg/m3 in case c)
- Currently measured background concentrations in Finland are typically 7 – 10 μg/m3

![Map showing PM$_{2.5}$ concentrations for different scenarios](image)

- a) 2000 kWh/a in all houses
- b) Additional 2000 kWh/a in houses with electric heating
- c) 4000 kWh/a in all houses
Results: population exposure

- Total annual PM$_{2.5}$ emissions in the scenarios: a) 225t, b) 275t, c) 450t
 => Up to 5% of Finnish total RWC emissions in 2014
- Emissions in the outskirts of major population centers
 => 93% of population exposure in areas classified as urban
- Average annual PM$_{2.5}$ emission concentrations in these areas increase by 1-10%
- Currently exposure to fine particles in ambient air is estimated to cause ~1800 annual deaths in Finland
Observations

- The maximum allowance for a masonry heater’s net heating energy does not translate directly to the actual wood consumption
 - It could increase the number of houses where supplementary heating by wood combustion is necessary
- Efficiency of combustion appliances is increasing, but so is the popularity of stoves
- In addition to fine particle emissions, wood combustion also produces climate-warming gases and pollutants (e.g. black carbon)
 - Impact in the Arctic area especially strong because of deposition of particles to snow and ice
Even the use of modern, efficient stoves causes a notable increase in PM$_{2.5}$ concentrations in urban areas
=> Invariably results in detrimental heath effects
Increasing of residential wood combustion not justified on environmental grounds
Legislation should focus on improving energy efficiency of houses
Thank you

Contact info:

mikko.savolahti@ymparisto.fi
+358 29 5251595

Finnish environment institute SYKE