Skip to main content

Hydrological research infrastructure (HYDRO-RI-Platform)

  • Duration: 2022 - 2024
  • Status: Completed

HYDRO-RI-Platform helps to fill identified gaps in national and the European Research Infrastructure roadmap by providing a dense, highly instrumented super-sites for freshwater monitoring. We aim to integrate and renew national water related research by establishing a hydrological research infrastructure.

Project management
Heiskanen Anna-Stiina (Syke)
Project team
Cintia Uvo (Syke), Jari Silander (Syke), Maria Kämäri (Syke), Olli Malve (Syke), Jari Hakala (Syke), Jari Uusikivi (Syke), Joonas Kahiluoto (Syke), Teemu Näykki (Syke), Sari Mitikka (Syke), Anna-Kaisa Ronkanen (Syke), Pasi Valkama (Syke), Katri Haatainen (Syke)
Financiers
Research Council of Finland, Research Council of Finland & DIWA Flagship Doctoral Education Pilot
Partners
University of Turku (coordination), National Land Survey of Finland, Aalto University, University of Oulu. International networks: DANUBIUS-RI, GFZ Potsdam GFZ, PotsdamGlobal Terrestrial Network – Hydrology (GTN-H) and the Lake Science network (GLEON)
Subject area
Research, Water, Environmental information

Current

Objectives

HYDRO-RI-Platform is one of the main parts of the Finnish Freshwater Competence Centre. It aims to Boost Science, Education, and Business with Key Technologies Freshwater Competence Centre.

HYDRO-RI-Platform (action plan at hand) helps to fill identified gaps in national and the European Research Infrastructure roadmap by providing a dense, highly instrumented super-sites for freshwater monitoring.

We aim to integrate and renew national water related research by establishing a hydrological research infrastructure, and the long-term goal is to become part of international RI clusters (e.g. ESFRI DANUBIUS-RI, EurAqua, eLTER).

t innovative science by interpreting multilevel high-resolution sensor data to understand, predict and communicate the role and response of freshwater systems in a changing hydrological regime, and by open access sharing at national, EU and global level.

Mission

Conduct innovative science by interpreting multilevel high-resolution sensor data to understand, predict and communicate the role and response of freshwater systems in a changing hydrological regime, and by open access sharing at national, EU and global level.

Research goals

  1. Provide advanced techniques to analyze interactions and responses in the hydrosphere by using novel integrated spatially and temporally covered monitoring approaches linked to modelling, management and decision making;
  2. Integrate these improved monitoring and modelling techniques and data management across disciplines to develop better information products which guide sustainable management of our waters under pressure of climate change and various land-use activities.
  3. Support training of new hydrology specialists and existing company employees with the newest instruments and measuring approaches in hydrology.
  4. Support education in Finnish companies and universities and execute knowledge exchange between academia and private water sector. HYDRO-RI-Platform will also enhance hydro power plant industry and water sector consultancy of water quality and flow monitoring, as well as boost the usage of cost-efficient methodologies in environmental consultancy. Thus, it will serve public-private partnerships even beyond the funding period.

Schedule

  • 2022 Planning phase: Defining consortium membership model, instrument pools and service policy; recognising potential user groups outside the core group; planning revenue logic; marketing plan; ensuring technician resources for the next stage; and planning overall budget with specific instrument costs.
  • 2022-23 Preparatory phase: Purchasing and testing instruments and constructing mobile instruments (autonomous mini-boat+ADCP/sonar/water quality sensors, drones with various sensors (still and video cameras, laser scanners), autonomous UAS platform, laser-scanner-AUV system, shallow-water-AUV systems with photogrammetric sensors and echo sounding) and in situ instruments (in situ water quality sensors, isotope analyser, autonomous lake reflectance measurement device and related electricity supply and data transfer instruments, temperature and water surface elevation loggers and flow velocity instrumentation
  • 2024-2027 Implementation phase: Securing operational budgeting from various sources; implementing fully all in situ instruments in all test sites; implementing fully mobile instruments and mobile laboratory facilities; planning and executing update scheme; recognizing key personnel for HYDRO-RI-Platform management and recruitment.
  • 2028-2030 Operational phase: The HYDRO-RI-Platform instrumentations have become established and standardised measurement procedures for monitoring the river and catchment systems in Finland. The developed infrastructure will at any instance remain for national usage, and will support research, business, teaching and public sectors related to water resources management.

Joint ownership agreement and data policy

Projects 

Literature

Pal, D., Marttila, H., Ala-Aho, P., Lotsari, E., Ronkanen, A.-K., Gonzales-Inca, C., Croghan, D., Korppoo, M., Kämäri, M., Rooijen, E. van, Blåfield, L., Silander, J., Baubekova, A., Bhattacharjee, J., Haghighi, A. T., Uvo, C. B., Kaartinen, H., Rasti, M., Klöve, B., & Alho, P. (2025). Blueprint conceptualization for a river basin’s digital twin. Hydrology Research (doi.org). 

Blåfield, L., Gonzales-Inca, C., Alho, P., & Kasvi, E. (2025). Morphological Response to Climate-Induced Flood Event Variability in a Sub-Arctic River (doi.org)

Takala, T., Lotsari, E., & Polvi, L. E. (2025). Surface flow and ice rafting velocities during freezing and thawing periods in Nordic Rivers. Journal of Hydrology, 649, 132447 (doi.org).

Kotamäki, N., Arhonditsis, G., Hjerppe, T., Hyytiäinen, K., Malve, O., Ovaskainen, O., Paloniitty, T., Similä, J., Soininen, N., Weigel, B., & Heiskanen, A.-S. (2024a). Strategies for integrating scientific evidence in water policy and law in the face.  of uncertainty. Science of The Total Environment, 931, 172855 (doi.org).

Yiheng Du, Jonas Olsson, Kristina Isberg, Johan Strömqvist, Yeshewatesfa Hundecha, Benedito Cláudio da Silva, Sameh Adib Abou Rafee, Carlos Ruberto Fragoso Jr, Stein Beldring, Anna Hansen, Cintia Bertacchi Uvo, Johanna Sörensen. (2024). Application-based evaluation of multi-basin hydrological models. Journal of Hydrology, volume 641. (doi.org).

Lintunen Karoliina, Kasvi Elina, Uvo Cintia, Alho Petteri. (2024). Changes in the discharge regime of Finnish rivers. Journal of Hydrology: Regional Studies. Volume 53 (doi.org)

Johanna Lykke Sörensen, Cintia B. Uvo , Stephanie Eisner, Jonas Olsson, Stein Beldring, Vanessa S.B. Carvalho, Maria Elenius, Carlos Ruberto Fragoso Jr, Anna Hansen, Trine Jahr Hegdahl, Benedito C. Silva, Michelle S. Reboita, Daniela R.T. Riondet-Costa, Nívea A.D. Pons. (2024). Decision Support Indicators (DSIs) and their role in hydrological planning. Environmental Science & Policy. Volume 157. (doi.org)

Luz Adriana Cuartas, Thais Fujita, Juliana Andrade Campos, Cintia Bertacchi Uvo, Gholamreza Nikravesh, Jonas Olsson, Johanna Sörensen, José Antonio Marengo, Diogo Amore, Elisangela Broedel, Jerusa Peixoto. (2024). Hydrometeorological drought analysis through Two-variate Standardized Index for the Paraná River Basin, Brazil. Journal of Hydrology: Regional Studies. Volume 54. (doi.org) 

Kämäri M., Ekholm P., Kahiluoto J., Saarinen  P. (2024). Vedenlaadun jatkuvatoimisen mittauksen haasteet ja mahdollisuudet. Vesitalous. (lehtiluukku.fi). 

Anna Autio, Pertti Ala-Aho, Pekka M. Rossi, Anna-Kaisa Ronkanen, Mika Aurela. (2023). Groundwater exfiltration pattern determination in the sub-arctic catchment using thermal imaging, stable water isotopes and fully-integrated groundwater-surface water modelling. Journal of Hydrology, Volume 626, Part B. (doi.org).

Anders Wörman, Ilias Pechlivanidis, Daniela Mewes, Joakim Riml & Cintia Bertacchi Uvo. (2023). Spatiotemporal management of solar, wind and hydropower across continental Europe. Communications engineering, volume 3. (doi.org).

Strategic Research and Innovation Agenda SRIA (2023) (water4all-partnership.eu)

Kallio, K., Malve, O., Siivola, E., Kervinen, M., Koponen, S., Lepistö, A., Lindfors, A., & Laine, M. (2023). Spatiotemporal analysis of Lake Chlorophyll-a with combined in situ and satellite data. Environmental Monitoring and Assessment, 195(4) (doi.org). 

Skarbøvik, Eva; Gyritia Madsen van't Veen, Sofie; Lannergård, Emma E.; Wenng, Hannah; Stutter, Marc; Bieroza, Magdalena; Atcheson, Kevin; Jordan, Philip; Fölster, Jens; Mellander, Per-Erik; Kronvang, Brian; Marttila, Hannu; Kaste, Øyvind; Lepistö, Ahti; Kämäri, Maria. (2023). Comparing in situ turbidity sensor measurements as a proxy for suspended sediments in North-Western European streams. CATENA.

Silander, J., Schantz, A., & Hölttä, V. (2023).  When ice breaks – Freshwater Competence Centre (whenicebreaks.com)

Jari Silander, Anton Von Schantz, Vesa Hölttä, Xiaoli Liu and Ella Rauth. (2022). 
Neuroverkot vesiriskien hallinnassa. Vesitalous. 

Petteri Alho, Hannu Marttila, Eliisa Lotsari, Harri Kaartinen, Cintia Uvo, Anna-Kaisa Ronkanen, Jari Silander. (2022). Uusi vesistötutkimuksen osaamiskeskus ottaa digiloikan suoraan syvään päähän. Vesitalous.

Lauri Ikkala, Anna-Kaisa Ronkanen, Jari Ilmonen, Maarit Similä, Sakari Rehell, Timo Kumpula, Lassi Päkkilä, Björn Klöve, Hannu Marttila. (2022). Unmanned Aircraft System (UAS) Structure-From-Motion (SfM) for Monitoring the Changed Flow Paths and Wetness in Minerotrophic Peatland Restoration. Remote sensing.

Marttila, H., Laudon, H., Tallaksen, L. M., Jaramillo, F., Alfredsen, K., Ronkanen, A.-K., Kronvang, B., Lotsari, E., Kämäri, M., Ala-Aho, P., Nousu, J., Silander, J., Koivusalo, H., Kløve, B. (2022). Nordic hydrological frontier in the 21st century. Hydrology research.

Gonzales-Inca, Carlos, Calle, Mikel, Croghan, Danny, Torabi Haghighi, Ali, Marttila, Hannu, Silander, Jari, Alho, Petteri. (2022). Geospatial Artificial Intelligence (GeoAI) in the Integrated Hydrological and Fluvial Systems Modeling: Review of Current Applications and Trends. Water. 

Lotsari, E., Lintunen, K., Kasvi, E., Alho, P., & Blåfield, L. (2022). The impacts of near-bed flow characteristics on river bed sediment transport under ice-covered conditions in 2016–2021. Journal of Hydrology, 615, 128610.

K. Heikkinen, M. Saari, J. Heino, A.-K. Ronkanen, P. Kortelainen, S. Joensuu, A. Vilmi, S.-M. Karjalainen, S. Hellsten, M. Visuri, H. Marttila. (2022). Iron in boreal river catchments: biochemical, ecological and management implications. Science of The Total Environment, Volume 805. (doi.org).

Marttila H, Laudon H, Tallaksen LM, Jaramillo F, Alfredsen K, Ronkanen A-K, Kronvang B, Lotsari E, Kämäri M, Ala-Aho P, Nousu J, Silander J, Koivusalo H, Kløve B. 2022. The Nordic Hydrological Frontier in the 21st Century. Hydrology Research, 53(5), 700–715. 

Rigon, R., Formetta, G., Bancheri, M., Tubini, N., D'Amato, C., David, O., and Massari, C. 2022: HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists, Hydrol. Earth Syst. Sci., 26, 4773–4800 (copernicus.org).

More information

Leading expert Jari Silander, p. +358 295 251 638, firstname.surname@syke.fi

Senior Research Scientist Maria Kämäri, p. +358 295 251 334, firstname.surname@syke.fi