Publications of GRACE project
Scientific articles
- DeMiguel-Jiménez, L., Etxebarria, N., Reinardy, H.C., Lekube, X., Marigómez, I. Izagirre, U. 2022. Toxicity to sea urchin embryos of crude and bunker oils weathered under ice alone and mixed with dispersant. Mar. Pollut. Bull. 175:113345. (sciencedirect.com)
- Pärt, S., Kankaanpää, H., Björkqvist, J.-V., and Uiboupi, R. 2021. Oil spill detection using fluorometric sensors: Laboratory validation and implementation to a FerryBox and a moored SmartBuoy. Front. Mar. Sci. 8:778136. (frontiersin.org)
- Nõlvak, H., Dang, N.P., Truu, M., Peeb, A., Tiirik, K., O’Sadnick, M., and Truu, J. 2021. Microbial community dynamics during biodegradation of crude oil and its response to biostimulation in Svalbard seawater at low temperature. Microorganisms 2021, 9, 2425. (mdpi.com)
- Esteban-Sánchez, A., Johann, S., Bilbao, D., Prieto, A., Hollert, H., Seiler, T.-B. & Orbea, A. 2021. Multilevel responses of adult zebrafish to crude and chemically dispersed oil exposure. Environ. Sci. Eur. 33, 106 (2021). (enveurope.springeropen.com)
- Johann, S., Nusser, L., Gossen, M., Hollert, H., Seiler, T.B. 2020. Differences in biomarker and behavioral responses to native and chemically dispersed crude and refined fossil oils in zebrafish early life stages. Sci. Tot. Environ. 709: Article Number: 136174. (sciencedirect.com)
- Wegeberg, S., Hansson, S.V., van Beest, F.M., Fritt-Rasmussen, J., and Gustavson, K. 2020. Smooth or smothering? The self-cleaning potential and photosynthetic effects of oil spill on arctic macro-algae Fucus distichus. Mar. Pollut. Bull. 150: 110604. (sciencedirect.com)
- Gustavson, K., Hansson, S.V., van Beest, F.M., Fritt-Rasmussen, J., Lassen, P., Geertz-Hansen, O., and Wegeberg, S. 2020. Natural removal of crude and heavy fuel oil on rocky shorelines in arctic climate regimes. Water Air Soil Pollut. 231: 479. (link.springer.com)
- Johann, S., Goßen, M., Behnisch, P.A., Hollert, H., Seiler, T.-B. 2020. Combining different in vitro bioassays to evaluate genotoxicity of water-accommodated fractions from petroleum products. Toxics 8: 45. (mdpi.com)
- Johann, S., Esser, M., Nüßer, L., Altin, D., Hollert, H., Seiler, T.-B. 2020. Receptor-mediated estrogenicity of native and chemically dispersed crude oil determined using adapted microscale reporter gene assays. Environ. Intl. 134: 105320. (sciencedirect.com)
- Joe, M.M., Gomathi, R., Benson, A., Shalini, D., Rengasamy, P., Henry, A.J., Truu, J., Truu, M., and Sa, T. 2019. Simultaneous application of biosurfactant and bioaugmentation with rhamnolipid-producing Shewanella for enhanced bioremediation of oil-polluted soil. Appl. Sci. 9:3773. (mdpi.com)
- Benito, D., Ahvo, A., Bilbao, D., Saenz, J., Etxebarria, N., Lekube, X., Izagirre, U., Lehtonen, K.K., Marigómez, I., Zaldibar B., and Soto, M. 2019. Influence of season-depending ecological variables on biomarker baseline levels in mussels (Mytilus trossulus) from two Baltic Sea subregions. Sci. Tot. Environ. 689: 1087–1103. (sciencedirect.com)
- Jørgensen, K.S., Kreutzer, A., Lehtonen, K.K., Kankaanpää, H., Rytkönen, J., Wegeberg, S., Gustavson, K., Fritt-Rasmussen, J., Truu, J., Kõuts, T., Lilover, M.-J., Seiler, T.-B., Hollert, H., Johann, S., Marigómez, I., Soto, M., Lekube, X., Jenssen, B.M., Ciesielski, T.M., Wilms, L.B., Högström, R., Pirneskoski, M., Virtanen, S., Forsman, B., Petrich, C., Phuong-Dang, N., and Wang, F. 2019. The EU Horizon 2020 project GRACE: integrated oil spill response actions and environmental effects. Environ. Sci. Eur. 31:44. (enveurope.springeropen.com)
- Katsumiti, A., Nicolussi, G., Bilbao, D., Prieto, A., Etxebarria, M, Cajaraville, M.P. 2019. In vitro toxicity testing in hemocytes of the marine mussel Mytilus galloprovincialis (L.) to uncover mechanisms of action of the water accommodated fraction (WAF) of a naphthenic North Sea crude oil without and with dispersant. Sci. Tot. Environ. 670: 1084-1094 (sciencedirect.com)
- Hansen, B.H., Hallmann, A., Altin, D., Jenssen,B.M. and Ciesielski T.M. 2017. Acute hydrogen peroxide (H2O2) exposure does not cause oxidative stress in late-copepodite stage of Calanus finmarchicus. 2017. J. Toxicol. Environ. Health, Part A, 80:16-18, 820-829. (tandfonline.com)
Project Deliverables
Project deliverables are available at the Community Research and Development Information Service (CORDIS) of the European Commission. The CORDIS website and repository about the GRACE project (cordis.europa.eu)
Magazine articles
- Cleaning up oil in a cold climate (European Commission DG Research Success stories, 7 March 2019) (ec.europa.eu)
- How to protect the Arctic as melting ice opens new shipping routes (Horizon - EU Research & Innovation Magazine, 17 December 2018) (horizon-magazine.eu)
Videos
- Combat of oil spills in Arctic waters - in situ burning experiments, Greenland. Summer 2017 (youtube.com)
- FerryBox real-time monitoring of oil between Tallinn and Stockholm (youtube.com)
- Smart Buoy will bring real time measurement of oil in Artic area conditions to oil spill response (youtube.com)
- Tactical use of drones and drifter buoys in oil spill response (youtube.com)
Data
- Ferrybox data (on-line.msi.ttu.ee)
- Smart Buoy data (www.luodedata.fi) User name: grace / password: oil
How to view and interpret the Smart buoy oil data
The results of the measuring station are viewable by clicking the on the map or the button below the map on the front page. The results are first presented in graphic format (the last 30 days) and below the graphs the results of the latest hours are presented in table format. You can download the measurement series to your own computer in excel-compatible format by pressing “Download to a file” button. All service events at the measuring station can be viewed by clicking “Browse the service history of the station”.
The results based on fluorometers (oil hydrocarbon and CDOM (colored dissolved organic matter)) are given as non-calibrated raw data and presented as RFU (relative fluorescence unit). A possible oil contamination drifting to the buoy area would result in a significant increase in oil hydrocarbon concentration compared to turbidity and CDOM, which would remain at the basic level at the same time. If an increase is also observed in CDOM values, an increased oil hydrocarbon concentration may not be the result of an oil spill, but merely a result of natural organic compounds being transported from coastal areas, as these compounds are measured at the same wavelengths.